Hair organ regeneration via the bioengineered hair follicular unit transplantation

نویسندگان

  • Kyosuke Asakawa
  • Koh-ei Toyoshima
  • Naoko Ishibashi
  • Hirofumi Tobe
  • Ayako Iwadate
  • Tatsuya Kanayama
  • Tomoko Hasegawa
  • Kazuhisa Nakao
  • Hiroshi Toki
  • Shotaro Noguchi
  • Miho Ogawa
  • Akio Sato
  • Takashi Tsuji
چکیده

Organ regenerative therapy aims to reproduce fully functional organs to replace organs that have been lost or damaged as a result of disease, injury, or aging. For the fully functional regeneration of ectodermal organs, a concept has been proposed in which a bioengineered organ is developed by reproducing the embryonic processes of organogenesis. Here, we show that a bioengineered hair follicle germ, which was reconstituted with embryonic skin-derived epithelial and mesenchymal cells and ectopically transplanted, was able to develop histologically correct hair follicles. The bioengineered hair follicles properly connected to the host skin epithelium by intracutaneous transplantation and reproduced the stem cell niche and hair cycles. The bioengineered hair follicles also autonomously connected with nerves and the arrector pili muscle at the permanent region and exhibited piloerection ability. Our findings indicate that the bioengineered hair follicles could restore physiological hair functions and could be applicable to surgical treatments for alopecia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fully functional hair follicle regeneration through the rearrangement of stem cells and their niches

Organ replacement regenerative therapy is purported to enable the replacement of organs damaged by disease, injury or aging in the foreseeable future. Here we demonstrate fully functional hair organ regeneration via the intracutaneous transplantation of a bioengineered pelage and vibrissa follicle germ. The pelage and vibrissae are reconstituted with embryonic skin-derived cells and adult vibri...

متن کامل

Bioengineering a 3D integumentary organ system from iPS cells using an in vivo transplantation model.

The integumentary organ system is a complex system that plays important roles in waterproofing, cushioning, protecting deeper tissues, excreting waste, and thermoregulation. We developed a novel in vivo transplantation model designated as a clustering-dependent embryoid body transplantation method and generated a bioengineered three-dimensional (3D) integumentary organ system, including appenda...

متن کامل

Advances in a rapidly emerging field of hair follicle stem cell research.

Human skin maintains the ability to regenerate during adulthood, as it constantly renews itself throughout adult life, and the hair follicle (HF) undergoes a perpetual cycle of growth and degeneration. The study of stem cells (SCs) in the epidermis and skin tissue engineering is a rapidly emerging field, where advances have been made in both basic and clinical research. Advances in basic scienc...

متن کامل

Bioengineered Lacrimal Gland Organ Regeneration in Vivo

The lacrimal gland plays an important role in maintaining a homeostatic environment for healthy ocular surfaces via tear secretion. Dry eye disease, which is caused by lacrimal gland dysfunction, is one of the most prevalent eye disorders and causes ocular discomfort, significant visual disturbances, and a reduced quality of life. Current therapies for dry eye disease, including artificial tear...

متن کامل

Evolution of hair transplantation

Aim: Numerous non-surgical methods and surgical options are available for the solution of baldness in the practice. Technology provides mighty weapons in this field. Thus, individualized solutions are best carried out with well-trained and qualified practitioners. Here, a modification of follicular unit extraction, direct hair implantation is introduced with previously licensed unique pens. Met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2012